Year 10 Curriculum Plan

In Year 10 students begin the GCSE course and study a range of different topics which focus on providing them with the skills they will need throughout their school life. Year 10 will focus on building confidence in ...

		,	Year 10 Curriculum Ove	erview		
Skills	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6
Higher Tier	Equations & Inequalities	Probability	Similarity & Congruence	More Trigonometry	Equations & Graphs	Circle Theorems
	N1 N8	N1 P1 P2 - P9	R6 R12 G5 GG7 G17 G19	N16 A8 A12 A13	N8	A16
	A3 A4 A5 A9 A11 A18 A19	Multiplicative Reasoning	Further Statistics	G20 G22 G23	A4 A11 A12 A18 - A22	G9 G10
	A21 A22	N12 N13 A2 A9	S1 S3 S4		More Algebra	
		R1 R6 R9 - R11 R13 R14 R16			N8 A4 A5 A6 A7 A18	
Pearson STEP	6 th - 12 th	5 th - 12 th / 6 th - 9 th	6 th - 12 th	9 th - 12 th	$6^{th} - 12^{th} / 8^{th} - 12^{th}$	7 th - 11 th
Foundation	Graphs	Transformations	Right Angled Triangles	Probability	Constructions, Loci &	Quadratics & Graphs
Tier	N13	R6 G1 G7 G24	N7 N15 R12	N5 P1 - P8	Bearings	N4 A1 A3 A4 A6 A8 A11 A12
	A7 - A10 A12 A14 A17	Ratio & Proportion	G6 G11 G20 G21	Percentages	R2 R6	A14 A18
	R11 R14 G14	N11 N13	Multiplicative Reasoning	R9 R16	G1 G2 G4 - G7	Perimeter, Area & Volume
		R1 R4 - R8 R10 - R12 R14	N13 R1 R7 R10 R11 R13 G14		G12 G13 G15	N8 N14 N15 N16
						G9 G14 G16 G17 G18
Pearson STEP	2 nd - 8 th	4 th – 8 th	3 rd - 8 th	3 rd – 8 th	1 st - 7 th	6 th -8 th / 4 th -8 th
Assessment	1 x 60 min topic based,	Mock exam 1	1 x 60 min topic based,	1 x 60 min topic based,	Mock exam 2	1 x 60 min topic based,
	cumulative exam sat in class	2 x 90 min papers sat in the	cumulative exam sat in class	cumulative exam sat in	2 x 90 min papers sat in	cumulative exam sat in class
		hall		class	the hall	

How you can support your child outside of lessons:

- Read through classwork and assessment feedback with them
- Support wider learning and problem solving

Engage with educational websites such as:

- Hegarty Maths <u>www.hegartymaths.com</u>
- NRICH
- Dr Frost Maths

Review Week

Cycle 3

Pupils complete a Trigonometry project – building and using a clinometer to measure the height of Norlington School.

Cycle 6

Pupils design a poster for a charity using their knowledge of constructions (foundation) and circle theorems (higher tier).

During both review weeks pupils also complete 'Memri' activities from Hegarty Maths to aid with knowledge retrieval and improve their cognitive load.

Year 11 Curriculum Plan

In Year 11 students study a range of different topics which focus on providing them with the skills they will need throughout their school life. Year 11 will focus on building confidence in ...

		Year 11 Curriculum Over	view	
Skills	Cycle 1	Cycle 2	Cycle 3	Cycle 4
Higher Tier	Vectors & Geometric Proof G25	Proportion & Graphs A7 A12 - A15 R7 R10 R13 - R16	Number & Co-Ordinate Geometry Review	Revision Exam Paper Packs
Pearson STEP	9 th - 12 th	7 th - 12 th		
Foundation Tier	Fractions, Indices & Standard Form N2 N3 N6 - N9	Congruence, Similarity & Vectors R6 R12 G3 G5 G6 G7 G17 G19 G24 G25 More Algebra A2 A3 A5 A6 A12 A14 A17 A19 A21 R10 R13 R14 R16	Algebra Review	Revision Exam Paper Packs
Assessment	6 th – 8 th 1 x 60 min topic based, cumulative exam sat in class	6 th -8 th / 4 th -8 th Mock exam 1 3 x 90 min papers sat in the hall	Mock exam 2 3 x 90 min papers sat in	Mock exam 3 2 x 90 min papers sat in
			the hall	the hall

Assessment Structure

Pupils sit 3 sets of mock exams across the year. Primarily secure mock papers are used, alongside shadow and practice papers.

Pupils sit 3 x 1.5-hour exams (80 marks each).

Paper 1 – Non-Calculator

Paper 2 – Calculator

Paper 3 – Calculator

How you can support your child outside of lessons:

- Read through classwork and assessment feedback with them
- Support wider learning and problem solving

Engage with educational websites such as:

- Hegarty Maths www.hegartymaths.com
- NRICH
- Dr Frost Maths

Review Week

Cycle 3

In year 11 Hegarty Maths is used extensively to ensure pupils can recall, remember and apply learnt knowledge. As part of review week, pupils complete Fix Up 5 and 'Memri' activities which revisit previous learning.

SEQUENCING AND PROGRESSION MAPPING IN MATHS

Pearson Step	Indicative Grade
1st	1
2 nd	1
3 rd	2
4 th	2
5 th	3
6 th	3
7 th	4
8 th	5
9 th	6
10 th	7
11 th	8
12 th	9

This is the 12-Step Progression Scale developed by Pearson in partnership with teachers.

Each curriculum overview above forms part of the five-year framework that outlines our view of how learning builds and develops across KS3 and KS4. They provide teachers and students with a progression route through a subject and highlight learning barriers that may be holding students back.

The curriculum has been broken down into key skills and progress descriptors so that you can see in detail the specific skills and knowledge that sit alongside the learning. Each progress descriptor in the Progression Map has been assigned a number between 1 and 12. These numbers (steps) indicate the level of challenge attributed to each topic.

^{*}Blue highlighted – Theta / Delta / Higher Tier only

N1	order positive and negative integers, decimals and fractions; use the symbols =, ≠, <, > , ≤, ≥	R1	change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound
N2	apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper		units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts
142	and improper), and mixed numbers — all both positive and negative		and (e.g. speed, rates of pay, prices, <u>activity pressure</u>) in maintened, <u>and argestate</u> contents
	and improperly, and mixed numbers—all both positive and negative	R2	use scale factors, scale diagrams and maps
N3	recognise and use relationships between operations, including inverse operations and be able to use BIDMAS	R3	express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1
	,	R4	use ratio notation, including reduction to simplest form
		R5	divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity
N4	use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common		into two parts as a ratio; apply ratio to real contexts and problems
	multiples, highest common factor, lowest common multiple, prime factorisation		
		R6	express a multiplicative relationship between two quantities as a ratio or a fraction
N5	apply systematic listing strategies, including use of the product rule for counting	R7	understand and use proportion as equality of ratios
		R8	relate ratios to fractions and to linear functions
		R9	interpret percentages and percentage changes as a fraction or a decimal; express one quantity as a
N6	use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5;		percentage of another; compare two quantities using percentages; work with percentages greater than 100%;
	estimate powers and roots of any given positive number		solve problems involving percentage change, including percentage increase/decrease and original value
N7	calculate with roots, and with integer and fractional indices		problems, and simple interest including in financial mathematics
N8	calculate exactly with fractions, surds and multiples of π ; simplify surd expressions involving squares (e.g.		
	$\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4 \times \sqrt{3}} = 2\sqrt{3}$ and rationalise denominators	R10	solve problems involving direct and inverse proportion, including graphical and algebraic representations
N9	calculate with and interpret standard form A × 10 ⁿ , where 1 ≤ A < 10 and n is an integer		
N10	work interchangeably with terminating decimals and their corresponding fractions and change recurring	R11	use compound units such as speed, rates of pay, unit pricing, density and pressure
	decimals into their corresponding fractions and vice versa	R12	compare lengths, areas and volumes using ratio notation; make links to similarity (including trigonometric
N11	identify and work with fractions in ratio problems		<u>ratios</u>) and scale factors
N12	interpret fractions and percentages as operators	R13	understand that X is inversely proportional to Y is equivalent to X is proportional to 1/Y; construct and
N13	use standard units of mass, length, time, money and other measures (including standard compound measures)		interpret equations that describe direct and inverse proportion
	using decimal quantities where appropriate	R14	interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that
N14	estimate answers; check calculations using approximation and estimation		illustrate direct and inverse proportion
		R15	interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of
N15	round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal		average and instantaneous rate of change (gradients of chords and tangents) in numerical, algebraic and
	places or significant figures)		graphical contexts (this does not include calculus)
		R16	set up, solve and interpret the answers in growth and decay problems, including compound interest and work
N16	apply and interpret limits of accuracy, including upper and lower bounds		with general iterative processes

A1	use and interpret algebraic manipulation, including:
	ab in place of a × b
	• 3y in place of y + y + y and 3 × y
	\bullet a ² in place of a × a, a ³ in place of a × a × a, a ² b in place of a × a × b
	● a/b in place of a ÷ b
	• coefficients written as fractions rather than as decimals
	• brackets
A2	substitute numerical values into formulae and expressions, including scientific formulae
A3	understand and use the concepts and vocabulary of expressions, equations, formulae, <u>identities</u> , inequalities,
	terms and factors
A4	simplify and manipulate algebraic expressions (<u>including those involving surds</u> and algebraic fractions) by:
	• collecting like terms
	multiplying a single term over a bracket
	• taking out common factors
	expanding products of two or more binomials
	• factorising quadratic expressions of the form x ² + bx + c, including the difference of two squares; factorising
	quadratic expressions of the form ax ² + bx + c
	• simplifying expressions involving sums, products and powers, including
	the laws of indices
A5	understand and use standard mathematical formulae; rearrange formulae to change the subject
A6	know the difference between an equation and an identity and use algebra to construct proofs
A7	where appropriate, interpret simple expressions as functions with inputs and outputs; ; interpret the reverse
	process as the 'inverse function'; interpret the succession of two functions as a 'composite function'
A8	work with coordinates in all four quadrants
A9	plot graphs of equations that correspond to straight-line graphs in the coordinate plane; use the form y = mx +
	c to identify parallel and perpendicular lines; find the equation of the line through two given points or through
	one point with a given gradient
A10	identify and interpret gradients and intercepts of linear functions graphically and algebraically
A11	identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots
	algebraically and turning points by completing the square
A12	recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the
	reciprocal function $y = 1/x$ with $x \ne 0$, exponential functions $y = k^x$ for positive values of k, and the
	trigonometric functions (with arguments in degrees) y = sin x, y = cos x and y = tan x for angles of any size
A13	sketch translations and reflections of a given function
A14	plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard
	functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving
	distance, speed and acceleration
	·

	A15	calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-		
		linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and		
		graphs in financial contexts		
	A16	recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a		
		circle at a given point		
	A17	solve linear equations in one unknown algebraically (including those with the unknown on both sides of the		
4		equation); find approximate solutions using a graph		
4	A18	solve quadratic equations algebraically by factorising, by completing the square and by using the quadratic		
		formula; find approximate solutions using a graph		
\dashv	A19	solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find		
		approximate solutions using a graph		
	A20	find approximate solutions to equations numerically using iteration		
	A21	translate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two		
		simultaneous equations), solve the equation(s) and interpret the solution		
	A22	solve linear inequalities in one or two variable(s), and quadratic inequalities in one variable; represent the		
		solution set on a number line, using set notation and on a graph		
	A23	generate terms of a sequence from either a term-to-term or a position-to-term rule		
	A24	recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci		
		type sequences, quadratic sequences, and simple geometric progressions (r ⁿ where n is an integer, and r is a		
\dashv		rational number > 0 or a surd) and other sequences		
\dashv	A25	deduce expressions to calculate the nth term of linear and quadratic sequences		
		+ · · · · · · · · · · · · · · · · · · ·		

G1	use conventional terms and notation: points, lines, vertices, edges, planes, parallel lines, perpendicular lines,
01	right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries
	Tight diligies, polygons, regular polygons and polygons with reflection and/or rotation symmetries
G2	use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a
	perpendicular to a given line from/at a given point, bisecting a given angle)
G3	apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles;
	understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a
	triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
G4	derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle,
	parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language
G5	use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)
G6	apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive
	results about angles and sides, including Pythagoras' theorem and the fact that the base angles of an isosceles
	triangle are equal, and use known results to obtain simple proofs
G7	identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering
	rotation, reflection, translation and enlargement (including <u>fractional</u> and negative <u>scale factors</u>)
G8	describe the changes and invariance achieved by combinations of rotations, reflections and translations
G9	identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference,
	tangent, arc, sector and segment
G10	apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use
	them to prove related results
G11	solve geometrical problems on coordinate axes
G12	identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids,
	cones and spheres
G13	<u>construct and</u> interpret plans and elevations of 3D shapes
G14	use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)
G15	measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use
	of bearings

G16	know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other
	right prisms (including cylinders)
G17	know the formulae: circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 ; calculate: perimeters of 2D
	shapes, including circles; areas of circles and composite shapes; surface area and volume of spheres, pyramids,
	cones and composite solids
G18	calculate arc lengths, angles and areas of sectors of circles
G19	apply the concepts of congruence and similarity, including the relationships between lengths, areas and
	volumes in similar figures
G20	know the formulae for: Pythagoras' theorem $a^2 + b^2 = c^2$, and the trigonometric ratios, $\sin \theta =$
	opposite/hypotenuse, $\cos \theta$ = adjacent/hypotenuse and $\tan \theta$ = opposite/adjacent apply them to find angles
	and lengths in right-angled triangles and, where possible, general triangles in two and three dimensional
	figures
G21	know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta = 0^{\circ}$, 30° , 45° , 60° and 90° ; know the exact value of $\tan \theta$ for $\theta =$
	0°, 30°, 45° and 60°
G22	know and apply the sine rule a/sin A = b/sin B = c/sin C , and cosine rule a² = b² + c² – 2bc cos A, to find
	unknown lengths and angles
G23	know and apply Area = 1/2 ab sin C to calculate the area, sides or angles of any triangle
G24	describe translations as 2D vectors
G25	apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column
	representations of vectors; use vectors to construct geometric arguments and proofs

P1	
LI	record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency
	trees
P2	apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future
	experiments
P3	relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1
	probability scale
P4	apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that
	the probabilities of an exhaustive set of mutually exclusive events sum to one
P5	understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing
	sample size
P6	enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams
P7	construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and
	use these to calculate theoretical probabilities
P8	calculate the probability of independent and ependent combined events, including using tree diagrams and
	other representations, and know the underlying assumptions
P9	calculate and interpret conditional probabilities through representation using expected frequencies wit
	two-way tables, tree diagrams and Venn diagrams

S1	infer properties of populations or distributions from a sample, while knowing the limitations of sampling
S2	interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and
	pictograms, vertical line charts for ungrouped discrete numerical data, <u>tables and line graphs for time series</u>
	<u>data</u>
S3	construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with
	equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use
S4	interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical representation involving discrete, continuous and grouped data, including box plot appropriate measures of central tendency (median, mean, mode and modal class) and spread (range,
	including consideration of outliers, quartiles and inter-quartile range)
S 5	apply statistics to describe a population
S6	use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate